
Girotto et al. Algorithms Mol Biol (2018) 13:8
https://doi.org/10.1186/s13015-018-0125-4

RESEARCH

FSH: fast spaced seed hashing exploiting
adjacent hashes
Samuele Girotto, Matteo Comin* and Cinzia Pizzi*

Abstract

Background: Patterns with wildcards in specified positions, namely spaced seeds, are increasingly used instead of
k-mers in many bioinformatics applications that require indexing, querying and rapid similarity search, as they can
provide better sensitivity. Many of these applications require to compute the hashing of each position in the input
sequences with respect to the given spaced seed, or to multiple spaced seeds. While the hashing of k-mers can be
rapidly computed by exploiting the large overlap between consecutive k-mers, spaced seeds hashing is usually com-
puted from scratch for each position in the input sequence, thus resulting in slower processing.

Results: The method proposed in this paper, fast spaced-seed hashing (FSH), exploits the similarity of the hash
values of spaced seeds computed at adjacent positions in the input sequence. In our experiments we compute the
hash for each positions of metagenomics reads from several datasets, with respect to different spaced seeds. We also
propose a generalized version of the algorithm for the simultaneous computation of multiple spaced seeds hashing.
In the experiments, our algorithm can compute the hashing values of spaced seeds with a speedup, with respect to
the traditional approach, between 1.6× to 5.3×, depending on the structure of the spaced seed.

Conclusions: Spaced seed hashing is a routine task for several bioinformatics application. FSH allows to perform this
task efficiently and raise the question of whether other hashing can be exploited to further improve the speed up.
This has the potential of major impact in the field, making spaced seed applications not only accurate, but also faster
and more efficient.

Availability: The software FSH is freely available for academic use at: https://bitbucket.org/samu661/fsh/overview.

Keywords: Spaced seeds, K-mers, Efficient hashing

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
The most frequently used tools in bioinformatics are
those searching for similarities, or local alignments,
between biological sequences. k-mers, i.e. words of
length k, are at the basis of many sequence comparison
methods, among which the most widely used and notable
example is BLAST [1].

BLAST uses the so-called “hit and extend” method,
where a hit consists of a match of a 11-mers between two
sequences. Then these matches are potential candidates
to be extended and to form a local alignment. It can be
easily noticed that not all local alignments include an

identical stretch of length 11. As observed in [2] allow-
ing for not consecutive matches increases the chances of
finding alignments. The idea of optimizing the choice of
the positions for the required matches, in order to design
the so called spaced seeds, has been investigated in many
studies, and it was used in PatternHunter [3], another
popular similarity search software.

In general contiguous k-mers counts are a fundamental
step in many bioinformatics applications [4–10]. How-
ever, spaced seeds are now routinely used, instead of con-
tiguous k-mers, in many problems involving sequence
comparison like: multiple sequence alignment [11], pro-
tein classification [12], read mapping [13] and for align-
ment-free phylogeny reconstruction [14]. More recently,
it was shown that also metagenome reads clustering and

Open Access

Algorithms for
Molecular Biology

*Correspondence: comin@dei.unipd.it; cinzia.pizzi@dei.unipd.it
Department of Information Engineering, University of Padova, via
Gradenigo 6/A, Padova, Italy

http://orcid.org/0000-0002-6616-4003
https://bitbucket.org/samu661/fsh/overview
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-018-0125-4&domain=pdf

Page 2 of 11Girotto et al. Algorithms Mol Biol (2018) 13:8

classification can benefit from the use of spaced seeds
[15–17].

A spaced seed of length k and weight w < k is a string
over the alphabet {1, 0} that contains w ‘1’ and (k − w) ‘0’
symbols. A spaced seed is a mask where the symbols ‘1’
and ‘0’ denote respectively match and don’t care posi-
tions. The design of spaced seeds is a challenging prob-
lem itself, tackled by several studies in the literature [3,
18, 19]. Ideally, one would like to maximize the sensitivity
of the spaced seeds, which is however an NP-hard prob-
lem [20].

The advantage of using spaced seeds, rather than con-
tiguous k-mers, in biological sequence analysis, comes
from the ability of such pattern model to account for
mutations, allowing for some mismatches in predefined
positions. Moreover, from the statistical point of view,
the occurrences of spaced seeds at neighboring sequence
positions are statistically less dependent than occur-
rences of contiguous k-mers [20]. Much work has been
dedicated to spaced seeds over the years, we refer the
reader to [21] for a survey on the earlier work.

Large-scale sequence analysis often relies on catalog-
ing or counting consecutive k-mers in DNA sequences
for indexing, querying and similarity searching. An effi-
cient way of implementing such operations is through the
use of hash based data structures, e.g. hash tables. In the
case of contiguous k-mers this operation is fairly simple
because the hashing value can be computed by extend-
ing the hash computed at the previous position, since
they share k − 1 symbols [22]. For this reason, indexing
all contiguous k-mers in a string can be a very efficient
process.

However, when using spaced seeds these observations
do not longer hold. As a consequence, the use of spaced
seeds within a string comparison method generally pro-
duces a slow down with respect to the analogous com-
putation performed using contiguous k-mers. Therefore,
improving the performance of spaced seed hashing algo-
rithms would have a great impact on a wide range of bio-
informatics tools.

For example, from a recent experimental comparison
among several metagenomic read classifiers [23], Clark
[7] emerged as one of the best performing tools for such a
task. Clark is based on discriminative contiguous k-mers,
and it is capable of classifying about 3.5M reads/min.
When contiguous k-mers are replaced by spaced seeds,
as in Clark-S [17], while the quality of the classification
improves, the classification rate is reduced to just 200K
reads/min.

The authors of Clark-S attributed such a difference
to the use of spaced seeds. In particular, the possible
sources of slowdown are two: the hashing of spaced
seeds, and the use of multiple spaced seeds. In fact,

Clark-S uses three different spaced seeds simultaneously
in its processing. However, while the number of spaced
seeds used could explain a 3× slowdown, running Clark-S
is 17× slower than the original k-mer based Clark. Thus,
the main cause of loss of speed performances can be
ascribe to the use of spaced seed instead of contiguous
k-mers. A similar reduction in time performance when
using spaced seeds is reported also in other studies [12,
13, 15]. We believe that one of the causes of the slow-
down is the fact that spaced seeds can not be efficiently
hashed, as opposed to contiguous k-mers, raising the
question of whether faster algorithms can be designed for
this purpose.

In this paper we address the problem of the compu-
tation of spaced seed hashing for all the positions in an
given input sequence, and present an algorithm that is
faster than the standard approach to solve this problem.
Moreover, since using multiple spaced seeds simultane-
ously on the same input string can increase the sensitiv-
ity [14], we also developed a variant of our algorithm for
simultaneous hashing of multiple spaced seeds. Although
faster implementations of specific methods that exploits
spaced seeds are desirable, the main focus of this paper is
the fast computation of spaced seed hashing.

In general, when computing a hash function there are
also other properties of the resulting hash that might be
of interest like: bit dependencies, hash distributions, col-
lisions etc. However, the main focus of this paper is the
fast computation of spaced seed hashing, using the sim-
ple Rabin-Karp rolling hash function. It is important to
observe that many hashing functions can be efficiently
computed from the Rabin-Karp rolling hash. For exam-
ple, our method can be extended to implement the cyclic
polynomial hash used in [22] with no extra costs.

In the "Methods" section we briefly summarize the
properties of spaced seeds and describe our algorithm,
FSH,1 together with a variant for handling multiple seed
hashing. Then, experimental results on NGS reads hash-
ing for various spaced seeds are reported and discussed.

Methods
A spaced-seed S (or just a seed) is a string over the alpha-
bet {1, 0} where the 1s correspond to matching positions.
The weight of a seed corresponds to the number of 1s,
while the overall length, or span, is the sum of the num-
ber of 0s and 1s.

Another way to denote a spaced seed is through the
notation introduced in [25]. A spaced seed can be rep-
resented by its shape Q that is the set of non negative
integers corresponding to the positions of the 1s in the

1 a preliminary version of this manuscript was published in [24].

Page 3 of 11Girotto et al. Algorithms Mol Biol (2018) 13:8

seed. A seed can be described by its shape Q where its
weight W is denoted as |Q|, and its span s(Q) is equal to
maxQ + 1. For any integer i and shape Q, the positioned
shape i + Q is defined as the set {i + k , k ∈ Q}. Let us
consider the positioned shape i + Q = {i0, i1, . . . , iW−1},
where i = i0 < i1 < ... < iW−1, and let x = x0x1 . . . xn−1
be a string over the alphabet A. For any position i in
the string x, with 0 ≤ i ≤ n− s(Q), the positioned
spaced seed i + Q identifies a string of length |Q| that
we call Q-gram. A Q-gram at position i in x is the string
xi0xi1 . . . xiW−1 and it is denoted by x[i + Q].

Example Let Q = {0, 2, 3, 4, 6, 7}, then Q is the seed
10111011, its weight is |Q| = 6 and its span is s(Q) = 8.
Let us consider the string x = ACTGACTGGA, then the
Q-gram x[0+ Q] = ATGATG can be defined as:

Similarly all other Q-grams are x[1+ Q] = CGACGG,
and x[2+ Q] = TACTGA.

Spaced seed hashing
In order to hash any string, first we need to have a coding func-
tion from the alphabet A to a binary codeword. For exam-
ple let us consider the function encode : A → {0, 1}log2|A|,
with the following values encode(A) = 00, encode(C) = 01,
encode(G) = 10, encode(T) = 11 . Based on this function
we can compute the encodings of all symbols of the Q-gram
x[0+ Q] as follows:

There exist several hashing functions, in this paper we
consider the Rabin-Karp rolling hash, defined as
h(x[0+ Q]) = encode(A) ∗ |A|

0
+ encode(T) ∗ |A|

1
+encode(G) ∗ |A|

2
+ encode(A) ∗ |A|

3
+ encode(T)

∗|A|
4
+ encode(G) ∗ |A|

5 . In the original Rabin-Karp
rolling hash all math is done in modulo n, here for sim-
plicity we avoid that. In the case of DNA sequences
|A| = 4, that is a power of 2 and thus the multiplications
can be implemented with a shift. In the above example,
the hashing value associated to the Q-gram ATGATG
simply corresponds to the list of encoding in Little-
endian: 101100101100.

To compute the hashing value of a Q-gram from its
encodings one can define the function h(x[i + Q]), for
any given position i of the string x, as:

x A C T G A C T G G A
Q 1 0 1 1 1 0 1 1
x[0 + Q] A T G A T G

x[0 + Q] A T G A T G
encodings 00 11 10 00 11 10

Where m(k) is the number of shifts to be applied to the
encoding of the k-th symbols. For a spaced seed Q the func-
tion m is defined as m(k) = |{i ∈ Q, such that i < k}| . In
other words, given a position k in the seed, m stores the
number of matching positions that appear to the left of
k. The vector m is important for the computation of the
hashing value of a Q-gram.

Example In the following we report an example of
hashing value computation for the Q-gram x[0+ Q].

x A C T G A C T G G A

Q 1 0 1 1 1 0 1 1

m 0 1 1 2 3 4 4 5

Shifted-
encod-
ings

00 11 ≪ 2 10 ≪ 4 00 ≪ 6 11 ≪ 8 10 ≪ 10

1100

101100

00101100

11001
01100

Hashing
value

101100
101100

 The hashing values for the others Q-grams can be deter-
mined through the function h(x[i + Q]) with a similar
procedure. Following the above example the hashing
values for the Q-grams x[1+ Q] = CGACGG and
x[2+ Q] = TACTGA are respectively 101001001001 and
001011010011.

In this paper we decided to use the Rabin-Karp roll-
ing hash, because it is very intuitive. There are other
hashing functions, like the cyclic polynomial hash, that
are usually more appropriate because of some desirable
properties like uniform distribution in the output space,
universality, higher-order independence [22]. In this
paper we will focus on the efficient computation of the
Rabin-Karp rolling hash. However, with the same para-
digm proposed in the following sections, one can com-
pute also the cyclic polynomial hash by replacing: shifts
with rotations, OR with XOR, and the function encode(A)
in Eq. (1) with a seed table where the letters of the DNA
alphabet are assigned different random 64-bit integers.

Fast spaced seed hashing
In many applications [11–15, 17] it is important to scan a
given string x and to compute the hashing values over all
positions. In this paper we want to address the following
problem.

(1)
h(x[i + Q]) =

∨

k∈Q

(encode(xi+k) ≪ m(k) ∗ log2|A|)

Page 4 of 11Girotto et al. Algorithms Mol Biol (2018) 13:8

Problem 1 Let us consider a string
x = x0x1 . . . xi . . . xn−1, of length n, a spaced seed Q and
an hash function h that maps strings into a binary code-
word. We want to compute the hashing values H(x,Q)
for all the Q-grams of x, in the natural order starting from
the first position 0 of x to the last n− s(Q).

Clearly, in order to address Problem 1, it is possible to
use Eq. 1 for each position of x. Note that, in order to com-
pute the hashing function h(x[i + Q]) for a given position,
the number of symbols that have to be extracted from x
and encoded into the hash is equal to the weight of the
seed |Q|. Thus such an approach can be very time con-
suming, requiring the encoding of |Q|(n− s(Q)) symbols.
In summary, loosely speaking, in the above process each
symbol of x is read and encoded into the hash |Q| times.

In this paper we present a solution for Problem 1 that is
optimal in the number of encoded symbols. The scope of
this study is to minimize the number of times that a sym-
bol needs to be read and encoded for the computation of
H(x,Q). Since the hashing values are computed in order,
starting from the first position, the idea is to speed up the
computation of the hash at a position i by reusing part of
the hashes already computed at previous positions.

As mentioned above, using Eq. 1 in each position of
an input string x is a simple possible way to compute
the hashing values H(x,Q). However, we can study how
the hashing values are built in order to develop a better
method. For example, let us consider the simple case of
a contiguous k-mers. Given the hashing value at posi-
tion i it is possible to compute the hashing for position
i + 1, with three operations: a rotation, the deletion of
the encoding of the symbol at position i, and the inser-
tion of the encoding of the symbol at position i + k, since
the two hashes share k − 1 symbols. In fact in [22] the
authors showed that this simple observation can speed up
the hashing of a string by recursively applying these oper-
ations. However, if we consider the case of a spaced seed
Q, we can clearly see that this observation does not hold.
In fact, in the above example, two consecutive Q-grams,
like x[0+ Q] = ATGATG and x[1+ Q] = CGACGG, do
not necessarily have much in common.

In the case of spaced seeds the idea of reusing part of
the previous hash to compute the next one needs to be
further developed. More precisely, because of the shape
of a spaced seed, we need to explore not only the hash
at the previous position, but all the s(Q)− 1 previous
hashes.

Let us assume that we want to compute the hash-
ing value at position i and that we already know
the hashing value at position i − j, with j < s(Q) .

H(x,Q) = �h(x[0+ Q]), h(x[1+ Q]), . . . h(x[n− s(Q)])�

We can introduce the following definition of
Cj = {k − j ∈ Q : k ∈ Q ∧m(k − j) = m(k)−m(j)} as
the positions in Q that after j shifts are still in Q with the
propriety of m(k − j) = m(k)−m(j). In other words, if
we are processing the position i of x and we want to reuse
the hashing value already computed at position i − j, Cj
represents the symbols of h(x[i − j + Q]) that we can
keep while computing h(x[i + Q]). More precisely, we
can keep the encoding of |Cj| symbols from that hash and
insert the remaining |Q| − |Cj| symbols at positions Q \ Cj.

Example If we know the first hashing value h(x[0+ Q])
and we want to compute the second hash h(x[1+ Q]),
the following example show how to construct C1.

k 0 1 2 3 4 5 6 7

Q 1 0 1 1 1 0 1 1

Q≪1 1 0 1 1 1 0 1 1

m(k) 0 1 1 2 3 4 4 5

m(k) − m(1) − 1 0 0 1 2 3 3 4

C1 2 3 6

 The symbols at positions C1 = {2, 3, 6} of the hash
h(x[1+ Q]) have already been encoded in the hash
h(x[0+ Q]) and we can keep them. In order to com-
plete h(x[1+ Q]), the remaining |Q| − |C1| = 3 symbols
need to be read from x at positions i + k, where i = 1 and
k ∈ Q\C1 = {0, 4, 7}.

x A C T G A C T G G A

x[0+ Q]A T G A T G

C1 2 3 6

Q\C1 0 4 7

x[1+ Q] C G A C G G

 Note that the definition of |Cj| is not equivalent to the over-
lap complexity of two spaced seeds, as defined in [19]. In
some cases, like the one presented above, the overlap com-
plexity coincides with |C1| = 3. However, there are other
cases where |Cj| is smaller than the overlap complexity.

Example Let us consider the hash at position 2
h(x[2+ Q]), and the hash at position 0 h(x[0+ Q]). In
this case we are interested in C2.

k 0 1 2 3 4 5 6 7

Q 1 0 1 1 1 0 1 1

Q ≪ 2 1 0 1 1 1 0 1 1

m(k) 0 1 1 2 3 4 4 5

m(k) − m(2) − 1 0 0 1 2 3 3 4

C2 0 4

Page 5 of 11Girotto et al. Algorithms Mol Biol (2018) 13:8

 The only symbols that can be preserved from h(x[0+ Q])
in order to compute h(x[2+ Q]) are those at positions 0
and 4, whereas the overlap complexity is 3.

For completeness we report all values of Cj:

In order to address Problem 1, we need to find, for a
given position i, the best previous hash that ensures to
minimize the number of times that a symbol needs to be
read and encoded, in order to compute h(x[i + Q]). We
recall that |Cj| represents the number of symbols that we
can keep from the previous hash at position i − j, and
thus the number of symbols that needs to be read and
encoded are |Q \ Cj|. To solve Problem 1 and to minimize
the number of symbols that needs to be read, |Q \ Cj|,
it is enough to search for the j that maximizes |Cj|. The
best previous hash can be detected with the following
function:

If we have already computed the previous j hashes, the
best hashing value can be found at position i − ArgBH(j),
and will produce the maximum saving |CArgBH(j)| in terms
of symbols that can be kept. Following the above obser-
vation we can compute all hashing values H(x,Q) incre-
mentally, by using dynamic programming as described by
the pseudocode of FSH.

Algorithm 1 FSH: Fast Spaced Seed Hashing
1: for i := 0 to |x| − s(Q) do

2: if (i == 0) then

3: h0 := compute h(x[0 +Q]);

4: else if (i < s(Q)− 1) then

5: hi := hi−ArgBH(i) m(ArgBH(i)) ∗ log2|A|;
6: for all k ∈ Q\CArgBH(i) do

7: insert encode(xi+k) at position m(k) ∗ log2|A| of hi;

8: end for

9: else

10: hi := hi−ArgBH(s(Q)−1) m(ArgBH(s(Q)− 1)) ∗ log2|A|;
11: for all k ∈ Q\CArgBH(s(Q)−1) do

12: insert encode(xi+k) at position m(k) ∗ log2|A| of hi;

13: end for

14: end if

15: end for

The above dynamic programming algorithm, FSH,
scans the input string x and computes all hashing value
according to the spaced seed Q. In order to better under-
stand the amount of savings we evaluate the above algo-
rithm by counting the number of symbols that are read
and encoded. First, we can consider the input string
to be long enough so that we can discard the transient
of the first s(Q)− 1 hashes. Let us continue to analyze

C = �C1, . . . , C7�

= �{2, 3, 6}, {0, 4}, {0, 3, 4}, {0, 2, 3}, {2}, {0}, {0}�

ArgBH(s) = arg max
j∈[1,s]

|Cj|

the spaced seed 10111011. If we use the standard func-
tion h(x[i + Q]) to compute all hashes, each symbol of x
is read |Q| = 6 times. With our algorithm, we have that
|CArgBH(7)| = 3 and thus half of the symbols do need to be
encoded again, overall each symbol is read three times.
The amount of saving depends on the structure of the
spaced seed. For example, the spaced seed 10101010101,
with the same weight |Q| = 6, is the one that ensures
the best savings (|CArgBH(10)| = 5). In fact, with our algo-
rithm, we can compute all hashing values while reading
each symbol of the input string only once, as with contig-
uous k-mers. To summarize, if one needs to scan a string
with a spaced seed and to compute all hashing values, the
above algorithm guarantees to minimize the number of
symbols to read.

Fast multiple spaced seed hashing
Using multiple spaced seeds, instead of just one spaced
seed, is reported to increase the sensitivity [14]. There-
fore, applications that exploit such an observation (for
example [15–17, 26]) will benefit from further speedup
that can be obtained from the information already com-
puted from multiple spaced seeds.

Our algorithm, FSH, can be extended to accommo-
date the need of hashing multiple spaced seeds simul-
taneously, without backtracking. Let us assume that we
have a set S = s1, s2, ..., s|S| of spaced seeds, all of the same
length L, from which we can compute the corresponding
vectors msi. To this purpose, FSH needs to be modified
as follows. First of all, a new cycle (between steps 2 and
14) is needed to iterate the processing among the set of
all spaced seeds. Next, Cj needs to be redefined so that it
compares not only a given spaced seed with itself, but all
spaced seeds vs all:

In the new definition Cyzj evaluates the number of sym-
bols in common between the seed sy and the j-th shift
of the seed sz. The function Cyzj allows to identify, while
computing the hash of sy, the number of symbols in com-
mon with the j-th shift of seed sz. Similarly, we need to
redefine ArgBH(i) so that it detects not only the best pre-
vious hash, but also the best seed. We define

that returns, for the seed sy, the pair (sz , p) representing
the best seed sz and best hash p. With these new defini-
tions we can now adjust our algorithm so that, while
computing the hash of sy for a given position i, it can
start from the best previous hash identified by the pair

C
yz
j = {k − j ∈ sy : k ∈ sz ∧msy(k − j) = msz (k)−msz (j)}

ArgBSH(y, s) = arg max
z∈[1,|S|],j∈[1,s]

|C
yz
j |

Page 6 of 11Girotto et al. Algorithms Mol Biol (2018) 13:8

ArgBSH(y, s) = (sz , p). The other steps for the insertion
of the remaining symbols do not need to be modified.

Algorithm 2 Fast Multiple Spaced Seed Hashing
1: for i := 0 to |x| − L do

2: for j := 1 to |S| do
3: if (i == 0) then

4: h0,j := compute h(x[0 + sj]);

5: else if (i < L− 1) then

6: (sz , p) = ArgBSH(sj , i);

7: hi,j := hi−p,z msz (p) ∗ log2|A|;
8: for all k ∈ sj\Cjz

p do

9: insert encode(xi+k) at position msj (k) ∗ log2|A| of hi,j ;

10: end for

11: else

12: (sz , p) = ArgBSH(sj , L− 1);

13: hi,j := hi−p,z msz (p) ∗ log2|A|;
14: for all k ∈ sj\Cjz

p do

15: insert encode(xi+k) at position msj (k) ∗ log2|A| of hi,j ;

16: end for

17: end if

18: end for

19: end for

Results and discussion
In this section we will discuss the improvement in terms
of time speedup of our approach (TFSH) with respect to
the time TEq1 needed for computing spaced seeds hashing
repeatedly using Eq. 1: speedup =

TEq1

TFSH
.

Spaced seeds and datasets description
The spaced seeds we used have been proposed in litera-
ture as maximizing the hit probability [17], minimizing
the overlap complexity [18] and maximizing the sensitiv-
ity [18]. We tested nine of such spaced seeds, three for
each category. The spaced seeds are reported in Table 1
and labeled Q1, Q2, ...,Q9. Besides these spaced seeds,
we also tested Q0, which corresponds to an exact match
with a 22mer (all 22 positions are set to 1), and Q10, a

spaced seed with repeated ‘10’ and a total of 22 symbols
equal to ‘1’. All spaced seeds Q0− Q10 have the same
weight |Qi| = 22. Furthermore, in order to compare seeds
with different density, we computed with rasbhari several
sets of seeds with weights from 11 to 32 and lengths from
16 to 45.

The datasets we used were taken from previous sci-
entific papers on metagenomic read binning and classi-
fication [6, 27]. We considered both simulated datasets
(S,L,R), and synthetic datasets (MiSeq, HiSeq, MK_a1,
MK_a2, and simBA5). The datasets Sx and Lx contain sets
of paired-end reads of length approximately 80 bp gener-
ated according to the Illumina error profile with an error
rate of 1%, while the datasets Rx contain Roche 454 sin-
gle-end long reads of length approximately 700bp, and a
sequencing error of 1%. The synthetic datasets represent
mock communities built from real shotgun reads of vari-
ous species. Table 2 shows, for each dataset, the number
of reads and their average length.

All the experiments where run on a laptop equipped
with an Intel i74510U cpu at 2 GHz, and 16 GB RAM.

Analysis of the time performances
Figure 1 plots, for each spaced seed, the speedup that is
obtainable with our approach with respect to the stand-
ard hashing computation. As a reference, the baseline
given by the standard approach is about 17 min to com-
pute the hash for a given seed on all datasets.

First of all it can be noticed that our approach improves
over the standard algorithm for all of the considered
spaced seeds. The smallest improvements are for the
spaced seeds Q2 and Q3, both belonging to the class of
spaced seeds maximizing the hit probability, for which
the speedup is almost 1.2×, and the running time is about
15 min. For all the other spaced seeds the speedup is
close to 1.6×, thus saving about 40% of the time required
by the standard computation, and ending the computa-
tion in less than 11 min on average.

Figure 2 shows the performances of our approach with
respect to the single datasets. In this experiment we con-
sidered the best performing spaced seed in each of the
classes that we considered, namely Q1, Q6, and Q9, and
the two additional special cases Q0 and Q10.

We notice that for the spaced seeds Q0 and Q10 the
standard approach requires respectively, 12 and 10 min,
to process all datasets. This is already an improvement of
the standard method with respect to the 17 min required
with the other seeds Q1− Q9. Nevertheless, with our
algorithm the hashing of all dataset can be completed in
just 2.7 min for Q0 e 2.5 min for Q10, with a speedup of
4.5× and 4.2×.

We observe that while the speedup for the spaced seeds
Q1, Q6, and Q9 is basically independent on the dataset

Table 1 The nine spaced seeds used in the experiments
grouped according to their type

 Spaced seeds maximizing the hit probability [17]

 Q1 1111011101110010111001011011111

 Q2 1111101011100101101110011011111

 Q3 1111101001110101101100111011111

Spaced seeds minimizing the overlap complexity [18]

 Q4 1111010111010011001110111110111

 Q5 1110111011101111010010110011111

 Q6 1111101001011100111110101101111

Spaced seeds maximizing the sensitivity [18]

 Q7 1111011110011010111110101011011

 Q8 1110101011101100110100111111111

 Q9 1111110101101011100111011001111

Page 7 of 11Girotto et al. Algorithms Mol Biol (2018) 13:8

and about 1.6×, the speedup for both the 22-mer Q0 and
the ‘alternate’ spaced seed Q10 is higher, spanning from
4.3× to 5.3×, depending on the seed and on the dataset.
In particular, the speedup increases with the length of the
reads and it achieves the highest values for the long read
datasets R7,R8 and R9. This behavior is expected, as these

datasets have longer reads with respect to the others,
thus the effect of the initial transient is mitigated.

Multiple spaced seed hashing
When the analysis of biological data to perform requires
the use of multiple spaced seeds, it is possible to compute
the hash of all seeds simultaneously while reading the
input string with the method described in Section.

In Fig. 3 we report the comparison between the
speedup we obtained when computing the hash for each
spaced seed Q1,...,Q9 independently (light grey), and the
speedup we obtained when using the multiple spaced
seeds approach (dark grey).

In most cases, multiple spaced seed hashing allows for
a further improvement of about 2–5%, depending on the
dataset. In terms of absolute values, the standard com-
putation to hash all datasets requires 159 min, the com-
putation of all seeds independently with the approach
described in Section takes 109 min, while the simulta-
neous computation of multiple spaced seeds with our
method takes 107 min. When considering all datasets
the average speedup increases from 1.45× (independent
computation) to 1.49× (simultaneous computation). The
small improvement can be justified by the fact that the
spaced seeds considered are by construction with mini-
mal overlap.

Table 2 Number of reads and average lengths for each
of the dataset used in our experiments

Datasets Number of reads Avg. read length

S6 1,426,457 80

S7 3,307,100 80

S9 4,468,336 80

S10 9,981,172 80

L5 1,016,418 80

L6 1,182,178 80

HiSeq 9,989,713 91

simBA5 5,439,738 100

MixK1 9,629,886 101

MixK2 7,149,900 101

MiSeq 9,933,556 131

R7 290,473 702

R8 374,576 715

R9 588,256 715

Fig. 1 The speedup of our approach with respect to the standard hashing computation, as a function of the spaced seeds used in our experiments

Page 8 of 11Girotto et al. Algorithms Mol Biol (2018) 13:8

Predicted speedup vs real speedup
In Fig. 4 are reported the average speedup (Real), over all
datasets, for the three different groups of nine seeds with
the same density (W/L), generated with rasbhari [18]. In

the same Figure we include also the speedup when all
nine seeds are used simultaneously (Multi) and the theo-
retical speedup predicted by our method (Predicted).

Fig. 2 Details of the speedup on each of the considered datasets. Q0 is the solid 22mer, Q10 is the spaced seed with repeated 10. The other
reported spaced seeds are the ones with the best performances for each class: Q1 (maximizing the hit probability), Q6 (minimizing the overlap
complexity) and Q9 (maximizing the sensitivity)

Fig. 3 Details of the time speedup of our approach with the multiple spaced seeds hashing (dark grey) and of our approach with each spaced seed
hashed independently (light grey)

Page 9 of 11Girotto et al. Algorithms Mol Biol (2018) 13:8

As, for the theoretical predicted speedups, these are
usually in line with the real speedups even if the abso-
lute values are not necessarily close. We suspect that the
model we use, where shifts and insertions have the same
cost, is too simplistic. Probably, the real computational
cost for the insertion of a symbol is greater than the cost
for shifting, and also cache misses might play a role.

If the theoretical speedup for multiple seeds is greater
than the theoretical speedup for independent seeds, this
indicates that in principle, with multiple seeds, it is pos-
sible to improve with respect to the computation of seeds
independently. It is interesting to note that the real results
confirm these predictions. For example, in the multiple
seeds with weights 32, it is impossible to improve both
theoretically and in practice. In the other two cases, the
computation of multiple seeds is faster in practice as cor-
rectly predicted by the theoretical speedup.

The effect of spaced seeds weight and reads length
To better understand the impact of reads length and den-
sity of spaced seeds on the speedup, in this section we
report a series of experiments under various conditions.
In order to compare the performance of our method on
spaced seeds with different weights we generated several
sets of nine spaced seeds with rasbhari [18] with weights
from 11 to 32 and lengths from 16 to 45. First, we test
how the reads length affects the speedup. In Fig. 5 we
report the speedup as a function of the reads length, for
various spaced seeds with the same density (W / L).

We can observe that the speedup increases as a func-
tion of the reads length. This is expected, in fact the
effect of the initial transient of our hashing computation

is mitigated on longer reads. Another interesting behav-
ior is the fact that, although the spaced seeds have all
the same density, longer spaced seeds have the highest
speedup. A possible explanation lies in the way our algo-
rithm works. Since our hashing computation explores
the previous L hashes searching for redundancies, as the
length of the spaced seed increases, also our ability to
reuse the previous hashes increases, and similarly it does
the speedup.

In Fig. 6 we compare the speedup of various spaced
seeds as a function of the weight W, while the length
L = 31 remains constant.

We can note that if the weight of the seeds grows then
also the speedup grows. This behavior is observed for
various reads length. This phenomenon can be explained
as follows, if a spaced seed has more 1s (higher weight),

Fig. 4 The theoretical and real speedup of our approach with respect to the standard hashing computation, as a function of the spaced seeds
weight

Fig. 5 The speedup of our approach with respect to the standard
hashing computation as a function of reads length and the spaced
seeds weight (all with the same density)

Page 10 of 11Girotto et al. Algorithms Mol Biol (2018) 13:8

then the chances to reuse part of the seed increase, and
consequently the speedup of FSH increases.

Conclusions and future work
In this paper we tackle the problem of designing faster
algorithms for the computation of spaced seed hashing.
We presented a new approach, FSH, for spaced seeds
hashing that exploits the information from adjacent
hashes, in order to minimize the operations that need
to be performed to compute the next hash. In summary,
FSH can speedup spaced seed hashing on various con-
ditions. The experiments we performed, on short NGS
reads, showed that FSH has a speedup of 1.6×, with
respect to the standard approach, for several kind of
spaced seeds defined in the literature. Furthermore, the
gain greatly improved in special cases, where seeds show
a high autocorrelation, and for which a speed up of about
4× to 5× can be achieved. The benefit in terms of compu-
tation time increases as the length of the reads grows, like
in modern sequencing technologies, or when long and
complex spaced seeds are needed.

Another contribution of this work is to open the way
to the development of further research on methods for
speeding up spaced seed hashing computation. In the
future, we plan to investigate alternative ways to com-
pute spaced seed hashing based on indexing strategies.
Another interesting direction of research is to experi-
mentally evaluate the impact of fast spaced seed hashing
in different bioinformatics contexts where tools based on
spaced seeds are used.

Authors’ contributions
All authors contributed to the design of the approach, the analysis of the
results, and the writing of the paper. CP and MC conceived the study. SG
implemented the FSH software tool. SG and MC performed the experiments.
CP coordinated and supervised the work. All authors read and approved the
final manuscript.

Competing interests
The authors declare that they have no competing interests.

Ethics approval and consent to participate
Not applicable.

Availability of data and materials
The software FSH is freely available for academic use at: https://bitbucket.org/
samu661/fsh/overview.

Funding
This work was supported by the Italian MIUR project “Compositional
Approaches for the Characterization and Mining of Omics Data”
(PRIN20122F87B2).

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

Received: 31 October 2017 Accepted: 12 March 2018

References
 1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment

search tool. J Mol Biol. 1990;215(3):403–10.
 2. Buhler J. Efficient large-scale sequence comparison by locality-sensitive

hashing. Bioinformatics. 2001;17(5):419.
 3. Ma B, Tromp J, Li M. Patternhunter: faster and more sensitive homology

search. Bioinformatics. 2002;18(3):440.
 4. Comin M, Antonello M. Fast entropic profiler: an information theoretic

approach for the discovery of patterns in genomes. IEEE/ACM Trans
Comput Biol Bioinformatics. 2014;11(3):500–9.

 5. Comin M, Leoni A, Schimd M. Clustering of reads with alignment-free
measures and quality values. Algorithms Mol Biol. 2015;10(1):4.

 6. Girotto S, Pizzi C, Comin M. MetaProb: accurate metagenomic reads
binning based on probabilistic sequence signatures. Bioinformatics.
2016;32(17):567–75. https://doi.org/10.1093/bioinformatics/btw466.

 7. Ounit R, Wanamaker S, Close TJ, Lonardi S. Clark: fast and accurate clas-
sification of metagenomic and genomic sequences using discriminative
k-mers. BMC Genomics. 2015;16(1):1–13.

 8. Pizzi C, Ukkonen E. Fast profile matching algorithms-a survey. Theor
Comput Sci. 2008;395(2):137–57.

 9. Parida L, Pizzi C, Rombo SE. Irredundant tandem motifs. Theor Comput
Sci. 2014;525:89–102.

 10. Shajii A, Yorukoglu D, William Yu Y, Berger B. Fast genotyping of
known snps through approximate k -mer matching. Bioinformatics.
2016;32(17):538.

 11. Darling AE, Treangen TJ, Zhang L, Kuiken C, Messeguer X, Perna NT. In:
Bücher P, Moret BME, editors. Procrastination leads to efficient filtration
for local multiple alignment. Berlin: Springer; 2006. p. 126–37.

 12. Onodera T, Shibuya T. The gapped spectrum kernel for support vec-
tor machines. In: Proceedings of the 9th international conference on
machine learning and data mining in pattern recognition. MLDM’13, pp.
1–15. Springer, Berlin, Heidelberg 2013.

 13. Rumble SM, Lacroute P, Dalca AV, Fiume M, Sidow A, Brudno M. Shrimp:
accurate mapping of short color-space reads. PLOS Comput Biol.
2009;5(5):1–11.

 14. Leimeister C-A, Boden M, Horwege S, Lindner S, Morgenstern B. Fast
alignment-free sequence comparison using spaced-word frequencies.
Bioinformatics. 2014;30(14):1991.

 15. Bainda K, Sykulski M, Kucherov G. Spaced seeds improve k-mer-based
metagenomic classification. Bioinformatics. 2015;31(22):3584.

 16. Girotto S, Comin M, Pizzi C. Metagenomic reads binning with spaced
seeds. Theor Comput Sci. 2017;698:88–99.

Fig. 6 The speedup of our approach with respect to the standard
hashing computation as a function of reads length and the spaced
seeds density (L=31 and W varies)

https://bitbucket.org/samu661/fsh/overview
https://bitbucket.org/samu661/fsh/overview
https://doi.org/10.1093/bioinformatics/btw466

Page 11 of 11Girotto et al. Algorithms Mol Biol (2018) 13:8

• We accept pre-submission inquiries

• Our selector tool helps you to find the most relevant journal

• We provide round the clock customer support

• Convenient online submission

• Thorough peer review

• Inclusion in PubMed and all major indexing services

• Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central
and we will help you at every step:

 17. Ounit R, Lonardi S. Higher classification sensitivity of short metagenomic
reads with clark-s. Bioinformatics. 2016;32(24):3823.

 18. Hahn L, Leimeister C-A, Ounit R, Lonardi S, Morgenstern B. Rasbhari: opti-
mizing spaced seeds for database searching, read mapping and align-
ment-free sequence comparison. PLOS Comput Biol. 2016;12(10):1–18.

 19. Ilie L, Ilie S, Mansouri Bigvand A. Speed: fast computation of sensitive
spaced seeds. Bioinformatics. 2011;27(17):2433.

 20. Ma B, Li M. On the complexity of the spaced seeds. J Comput Syst Sci.
2007;73(7):1024–34.

 21. Brown DG, Li M, Ma B. A tutorial of recent developments in the seeding
of local alignment. J Bioinformatics Comput Biol. 2004;02(04):819–42.

 22. Mohamadi H, Chu J, Vandervalk BP, Birol I. ntHash: recursive nucleotide
hashing. Bioinformatics. 2016;32(22):3492–4. https://doi.org/10.1093/
bioinformatics/btw397.

 23. Lindgreen S, Adair KL, Gardner P. An evaluation of the accuracy and
speed of metagenome analysis tools. Sci Rep. 2016;6:19233.

 24. Girotto S, Comin M, Pizzi C. Fast spaced seed hashing. In: Schwartz R,
Reinert K, editors. In: 17th international workshop on algorithms in
bioinformatics (WABI 2017), vol 88. Leibniz international proceedings
in informatics (LIPIcs)Dagstuhl: Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik; 2017. pp. 7–1714.

 25. Keich U, Li M, Ma B, Tromp J. On spaced seeds for similarity search. Dis
Appl Math. 2004;138(3):253–63.

 26. Girotto S, Comin M, Pizzi C. Binning metagenomic reads with probabilistic
sequence signatures based on spaced seeds. In: 2017 IEEE conference on
computational intelligence in bioinformatics and computational biology
(CIBCB). pp. 1–8. 2017.

 27. Wood DE, Salzberg SL. Kraken: ultrafast metagenomic sequence clas-
sification using exact alignments. Genome Biol. 2014;15:46.

https://doi.org/10.1093/bioinformatics/btw397
https://doi.org/10.1093/bioinformatics/btw397

	FSH: fast spaced seed hashing exploiting adjacent hashes
	Abstract
	Background:
	Results:
	Conclusions:
	Availability:

	Background
	Methods
	Spaced seed hashing
	Fast spaced seed hashing
	Fast multiple spaced seed hashing

	Results and discussion
	Spaced seeds and datasets description
	Analysis of the time performances
	Multiple spaced seed hashing
	Predicted speedup vs real speedup
	The effect of spaced seeds weight and reads length

	Conclusions and future work
	Authors’ contributions
	References

