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Abstract 

Background: Patterns with wildcards in specified positions, namely spaced seeds, are increasingly used instead of 
k-mers in many bioinformatics applications that require indexing, querying and rapid similarity search, as they can 
provide better sensitivity. Many of these applications require to compute the hashing of each position in the input 
sequences with respect to the given spaced seed, or to multiple spaced seeds. While the hashing of k-mers can be 
rapidly computed by exploiting the large overlap between consecutive k-mers, spaced seeds hashing is usually com-
puted from scratch for each position in the input sequence, thus resulting in slower processing.

Results:  The method proposed in this paper, fast spaced-seed hashing (FSH), exploits the similarity of the hash 
values of spaced seeds computed at adjacent positions in the input sequence. In our experiments we compute the 
hash for each positions of metagenomics reads from several datasets, with respect to different spaced seeds. We also 
propose a generalized version of the algorithm for the simultaneous computation of multiple spaced seeds hashing. 
In the experiments, our algorithm can compute the hashing values of spaced seeds with a speedup, with respect to 
the traditional approach, between 1.6× to 5.3×, depending on the structure of the spaced seed.

Conclusions: Spaced seed hashing is a routine task for several bioinformatics application. FSH allows to perform this 
task efficiently and raise the question of whether other hashing can be exploited to further improve the speed up. 
This has the potential of major impact in the field, making spaced seed applications not only accurate, but also faster 
and more efficient.

Availability: The software FSH is freely available for academic use at: https://bitbucket.org/samu661/fsh/overview.
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Background
The most frequently used tools in bioinformatics are 
those searching for similarities, or local alignments, 
between biological sequences. k-mers, i.e. words of 
length k, are at the basis of many sequence comparison 
methods, among which the most widely used and notable 
example is BLAST [1].

BLAST uses the so-called “hit and extend” method, 
where a hit consists of a match of a 11-mers between two 
sequences. Then these matches are potential candidates 
to be extended and to form a local alignment. It can be 
easily noticed that not all local alignments include an 

identical stretch of length 11. As observed in [2] allow-
ing for not consecutive matches increases the chances of 
finding alignments. The idea of optimizing the choice of 
the positions for the required matches, in order to design 
the so called spaced seeds, has been investigated in many 
studies, and it was used in PatternHunter [3], another 
popular similarity search software.

In general contiguous k-mers counts are a fundamental 
step in many bioinformatics applications [4–10]. How-
ever, spaced seeds are now routinely used, instead of con-
tiguous k-mers, in many problems involving sequence 
comparison like: multiple sequence alignment [11], pro-
tein classification [12], read mapping [13] and for align-
ment-free phylogeny reconstruction [14]. More recently, 
it was shown that also metagenome reads clustering and 
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classification can benefit from the use of spaced seeds 
[15–17].

A spaced seed of length k and weight w < k is a string 
over the alphabet {1, 0} that contains w ‘1’ and (k − w) ‘0’ 
symbols. A spaced seed is a mask where the symbols ‘1’ 
and ‘0’ denote respectively match and don’t care posi-
tions. The design of spaced seeds is a challenging prob-
lem itself, tackled by several studies in the literature [3, 
18, 19]. Ideally, one would like to maximize the sensitivity 
of the spaced seeds, which is however an NP-hard prob-
lem [20].

The advantage of using spaced seeds, rather than con-
tiguous k-mers, in biological sequence analysis, comes 
from the ability of such pattern model to account for 
mutations, allowing for some mismatches in predefined 
positions. Moreover, from the statistical point of view, 
the occurrences of spaced seeds at neighboring sequence 
positions are statistically less dependent than occur-
rences of contiguous k-mers [20]. Much work has been 
dedicated to spaced seeds over the years, we refer the 
reader to [21] for a survey on the earlier work.

Large-scale sequence analysis often relies on catalog-
ing or counting consecutive k-mers in DNA sequences 
for indexing, querying and similarity searching. An effi-
cient way of implementing such operations is through the 
use of hash based data structures, e.g. hash tables. In the 
case of contiguous k-mers this operation is fairly simple 
because the hashing value can be computed by extend-
ing the hash computed at the previous position, since 
they share k − 1 symbols [22]. For this reason, indexing 
all contiguous k-mers in a string can be a very efficient 
process.

However, when using spaced seeds these observations 
do not longer hold. As a consequence, the use of spaced 
seeds within a string comparison method generally pro-
duces a slow down with respect to the analogous com-
putation performed using contiguous k-mers. Therefore, 
improving the performance of spaced seed hashing algo-
rithms would have a great impact on a wide range of bio-
informatics tools.

For example, from a recent experimental comparison 
among several metagenomic read classifiers [23], Clark 
[7] emerged as one of the best performing tools for such a 
task. Clark is based on discriminative contiguous k-mers, 
and it is capable of classifying about 3.5M reads/min. 
When contiguous k-mers are replaced by spaced seeds, 
as in Clark-S [17], while the quality of the classification 
improves, the classification rate is reduced to just 200K 
reads/min.

The authors of Clark-S attributed such a difference 
to the use of spaced seeds. In particular, the possible 
sources of slowdown are two: the hashing of spaced 
seeds, and the use of multiple spaced seeds. In fact, 

Clark-S uses three different spaced seeds simultaneously 
in its processing. However, while the number of spaced 
seeds used could explain a 3× slowdown, running Clark-S 
is 17× slower than the original k-mer based Clark. Thus, 
the main cause of loss of speed performances can be 
ascribe to the use of spaced seed instead of contiguous 
k-mers. A similar reduction in time performance when 
using spaced seeds is reported also in other studies [12, 
13, 15]. We believe that one of the causes of the slow-
down is the fact that spaced seeds can not be efficiently 
hashed, as opposed to contiguous k-mers, raising the 
question of whether faster algorithms can be designed for 
this purpose.

In this paper we address the problem of the compu-
tation of spaced seed hashing for all the positions in an 
given input sequence, and present an algorithm that is 
faster than the standard approach to solve this problem. 
Moreover, since using multiple spaced seeds simultane-
ously on the same input string can increase the sensitiv-
ity [14], we also developed a variant of our algorithm for 
simultaneous hashing of multiple spaced seeds. Although 
faster implementations of specific methods that exploits 
spaced seeds are desirable, the main focus of this paper is 
the fast computation of spaced seed hashing.

In general, when computing a hash function there are 
also other properties of the resulting hash that might be 
of interest like: bit dependencies, hash distributions, col-
lisions etc. However, the main focus of this paper is the 
fast computation of spaced seed hashing, using the sim-
ple Rabin-Karp rolling hash function. It is important to 
observe that many hashing functions can be efficiently 
computed from the Rabin-Karp rolling hash. For exam-
ple, our method can be extended to implement the cyclic 
polynomial hash used in [22] with no extra costs.

In the "Methods" section we briefly summarize the 
properties of spaced seeds and describe our algorithm, 
FSH,1 together with a variant for handling multiple seed 
hashing. Then, experimental results on NGS reads hash-
ing for various spaced seeds are reported and discussed.

Methods
A spaced-seed S (or just a seed) is a string over the alpha-
bet {1, 0} where the 1s correspond to matching positions. 
The weight of a seed corresponds to the number of 1s, 
while the overall length, or span, is the sum of the num-
ber of 0s and 1s.

Another way to denote a spaced seed is through the 
notation introduced in [25]. A spaced seed can be rep-
resented by its shape Q that is the set of non negative 
integers corresponding to the positions of the 1s in the 

1 a preliminary version of this manuscript was published in [24].
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seed. A seed can be described by its shape Q where its 
weight W is denoted as |Q|, and its span s(Q) is equal to 
maxQ + 1. For any integer i and shape Q, the positioned 
shape i + Q is defined as the set {i + k , k ∈ Q}. Let us 
consider the positioned shape i + Q = {i0, i1, . . . , iW−1}, 
where i = i0 < i1 < ... < iW−1, and let x = x0x1 . . . xn−1 
be a string over the alphabet A. For any position i in 
the string x, with 0 ≤ i ≤ n− s(Q), the positioned 
spaced seed i + Q identifies a string of length |Q| that 
we call Q-gram. A Q-gram at position i in x is the string 
xi0xi1 . . . xiW−1 and it is denoted by x[i + Q].

Example Let Q = {0, 2, 3, 4, 6, 7}, then Q is the seed 
10111011, its weight is |Q| = 6 and its span is s(Q) = 8. 
Let us consider the string x = ACTGACTGGA, then the 
Q-gram x[0+ Q] = ATGATG can be defined as:

Similarly all other Q-grams are x[1+ Q] = CGACGG, 
and x[2+ Q] = TACTGA.

Spaced seed hashing
In order to hash any string, first we need to have a coding func-
tion from the alphabet A to a binary codeword. For exam-
ple let us consider the function encode : A → {0, 1}log2|A|, 
with the following values encode(A) = 00, encode(C) = 01,  
encode(G) = 10, encode(T ) = 11 . Based on this function 
we can compute the encodings of all symbols of the Q-gram 
x[0+ Q] as follows:

There exist several hashing functions, in this paper we 
consider the Rabin-Karp rolling hash, defined as  
h(x[0+ Q]) = encode(A) ∗ |A|

0
+ encode(T ) ∗ |A|

1  
+encode(G) ∗ |A|

2
+ encode(A) ∗ |A|

3
+ encode(T )  

∗|A|
4
+ encode(G) ∗ |A|

5 . In the original Rabin-Karp 
rolling hash all math is done in modulo n, here for sim-
plicity we avoid that. In the case of DNA sequences 
|A| = 4, that is a power of 2 and thus the multiplications 
can be implemented with a shift. In the above example, 
the hashing value associated to the Q-gram ATGATG 
simply corresponds to the list of encoding in Little-
endian: 101100101100.

To compute the hashing value of a Q-gram from its 
encodings one can define the function h(x[i + Q]), for 
any given position i of the string x, as:

x A C T G A C T G G A
Q 1 0 1 1 1 0 1 1
x[0 + Q] A T G A T G

x[0 + Q] A T G A T G
encodings 00 11 10 00 11 10

Where m(k) is the number of shifts to be applied to the 
encoding of the k-th symbols. For a spaced seed Q the func-
tion m is defined as m(k) = |{i ∈ Q, such that i < k}| . In 
other words, given a position k in the seed, m stores the 
number of matching positions that appear to the left of 
k. The vector m is important for the computation of the 
hashing value of a Q-gram.

Example In the following we report an example of 
hashing value computation for the Q-gram x[0+ Q].

x A C T G A C T G G A

Q 1 0 1 1 1 0 1 1

m 0 1 1 2 3 4 4 5

Shifted-
encod-
ings

00 11 ≪ 2 10 ≪ 4 00 ≪ 6 11 ≪ 8 10 ≪ 10

1100

101100

00101100

11001 
01100

Hashing 
value

101100 
101100

 The hashing values for the others Q-grams can be deter-
mined through the function h(x[i + Q]) with a similar 
procedure. Following the above example the hashing 
values for the Q-grams x[1+ Q] = CGACGG and 
x[2+ Q] = TACTGA are respectively 101001001001 and 
001011010011.

In this paper we decided to use the Rabin-Karp roll-
ing hash, because it is very intuitive. There are other 
hashing functions, like the cyclic polynomial hash, that 
are usually more appropriate because of some desirable 
properties like uniform distribution in the output space, 
universality, higher-order independence [22]. In this 
paper we will focus on the efficient computation of the 
Rabin-Karp rolling hash. However, with the same para-
digm proposed in the following sections, one can com-
pute also the cyclic polynomial hash by replacing: shifts 
with rotations, OR with XOR, and the function encode(A) 
in Eq. (1) with a seed table where the letters of the DNA 
alphabet are assigned different random 64-bit integers.

Fast spaced seed hashing
In many applications [11–15, 17] it is important to scan a 
given string x and to compute the hashing values over all 
positions. In this paper we want to address the following 
problem.

(1)
h(x[i + Q]) =

∨

k∈Q

(encode(xi+k) ≪ m(k) ∗ log2|A|)
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Problem  1 Let us consider a string 
x = x0x1 . . . xi . . . xn−1, of length n, a spaced seed Q and 
an hash function h that maps strings into a binary code-
word. We want to compute the hashing values H(x,Q) 
for all the Q-grams of x, in the natural order starting from 
the first position 0 of x to the last n− s(Q).

Clearly, in order to address Problem 1, it is possible to 
use Eq. 1 for each position of x. Note that, in order to com-
pute the hashing function h(x[i + Q]) for a given position, 
the number of symbols that have to be extracted from x 
and encoded into the hash is equal to the weight of the 
seed |Q|. Thus such an approach can be very time con-
suming, requiring the encoding of |Q|(n− s(Q)) symbols. 
In summary, loosely speaking, in the above process each 
symbol of x is read and encoded into the hash |Q| times.

In this paper we present a solution for Problem 1 that is 
optimal in the number of encoded symbols. The scope of 
this study is to minimize the number of times that a sym-
bol needs to be read and encoded for the computation of 
H(x,Q). Since the hashing values are computed in order, 
starting from the first position, the idea is to speed up the 
computation of the hash at a position i by reusing part of 
the hashes already computed at previous positions.

As mentioned above, using Eq.  1 in each position of 
an input string x is a simple possible way to compute 
the hashing values H(x,Q). However, we can study how 
the hashing values are built in order to develop a better 
method. For example, let us consider the simple case of 
a contiguous k-mers. Given the hashing value at posi-
tion i it is possible to compute the hashing for position 
i + 1, with three operations: a rotation, the deletion of 
the encoding of the symbol at position i, and the inser-
tion of the encoding of the symbol at position i + k, since 
the two hashes share k − 1 symbols. In fact in [22] the 
authors showed that this simple observation can speed up 
the hashing of a string by recursively applying these oper-
ations. However, if we consider the case of a spaced seed 
Q, we can clearly see that this observation does not hold. 
In fact, in the above example, two consecutive Q-grams, 
like x[0+ Q] = ATGATG and x[1+ Q] = CGACGG, do 
not necessarily have much in common.

In the case of spaced seeds the idea of reusing part of 
the previous hash to compute the next one needs to be 
further developed. More precisely, because of the shape 
of a spaced seed, we need to explore not only the hash 
at the previous position, but all the s(Q)− 1 previous 
hashes.

Let us assume that we want to compute the hash-
ing value at position i and that we already know 
the hashing value at position i − j, with j < s(Q) . 

H(x,Q) = �h(x[0+ Q]), h(x[1+ Q]), . . . h(x[n− s(Q)])�

We can introduce the following definition of 
Cj = {k − j ∈ Q : k ∈ Q ∧m(k − j) = m(k)−m(j)} as 
the positions in Q that after j shifts are still in Q with the 
propriety of m(k − j) = m(k)−m(j). In other words, if 
we are processing the position i of x and we want to reuse 
the hashing value already computed at position i − j, Cj 
represents the symbols of h(x[i − j + Q]) that we can 
keep while computing h(x[i + Q]). More precisely, we 
can keep the encoding of |Cj| symbols from that hash and 
insert the remaining |Q| − |Cj| symbols at positions Q \ Cj.

Example If we know the first hashing value h(x[0+ Q]) 
and we want to compute the second hash h(x[1+ Q]), 
the following example show how to construct C1.

k 0 1 2 3 4 5 6 7

Q 1 0 1 1 1 0 1 1

Q≪1 1 0 1 1 1 0 1 1

m(k) 0 1 1 2 3 4 4 5

m(k) − m(1) − 1 0 0 1 2 3 3 4

C1 2 3 6

 The symbols at positions C1 = {2, 3, 6} of the hash 
h(x[1+ Q]) have already been encoded in the hash 
h(x[0+ Q]) and we can keep them. In order to com-
plete h(x[1+ Q]), the remaining |Q| − |C1| = 3 symbols 
need to be read from x at positions i + k, where i = 1 and 
k ∈ Q\C1 = {0, 4, 7}. 

x A C T G A C T G G A

x[0+ Q]A T G A T G

C1 2 3 6

Q\C1 0 4 7

x[1+ Q] C G A C G G

 Note that the definition of |Cj| is not equivalent to the over-
lap complexity of two spaced seeds, as defined in [19]. In 
some cases, like the one presented above, the overlap com-
plexity coincides with |C1| = 3. However, there are other 
cases where |Cj| is smaller than the overlap complexity.

Example Let us consider the hash at position 2 
h(x[2+ Q]), and the hash at position 0 h(x[0+ Q]). In 
this case we are interested in C2.

k 0 1 2 3 4 5 6 7

Q 1 0 1 1 1 0 1 1

Q ≪ 2 1 0 1 1 1 0 1 1

m(k) 0 1 1 2 3 4 4 5

m(k) − m(2) − 1 0 0 1 2 3 3 4

C2 0 4
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 The only symbols that can be preserved from h(x[0+ Q]) 
in order to compute h(x[2+ Q]) are those at positions 0 
and 4, whereas the overlap complexity is 3.

For completeness we report all values of Cj:

In order to address Problem  1, we need to find, for a 
given position i, the best previous hash that ensures to 
minimize the number of times that a symbol needs to be 
read and encoded, in order to compute h(x[i + Q]). We 
recall that |Cj| represents the number of symbols that we 
can keep from the previous hash at position i − j, and 
thus the number of symbols that needs to be read and 
encoded are |Q \ Cj|. To solve Problem 1 and to minimize 
the number of symbols that needs to be read, |Q \ Cj|, 
it is enough to search for the j that maximizes |Cj|. The 
best previous hash can be detected with the following 
function:

If we have already computed the previous j hashes, the 
best hashing value can be found at position i − ArgBH(j), 
and will produce the maximum saving |CArgBH(j)| in terms 
of symbols that can be kept. Following the above obser-
vation we can compute all hashing values H(x,Q) incre-
mentally, by using dynamic programming as described by 
the pseudocode of FSH.

Algorithm 1 FSH: Fast Spaced Seed Hashing
1: for i := 0 to |x| − s(Q) do

2: if (i == 0) then

3: h0 := compute h(x[0 +Q]);

4: else if (i < s(Q)− 1) then

5: hi := hi−ArgBH(i) m(ArgBH(i)) ∗ log2|A|;
6: for all k ∈ Q\CArgBH(i) do

7: insert encode(xi+k) at position m(k) ∗ log2|A| of hi;

8: end for

9: else

10: hi := hi−ArgBH(s(Q)−1) m(ArgBH(s(Q)− 1)) ∗ log2|A|;
11: for all k ∈ Q\CArgBH(s(Q)−1) do

12: insert encode(xi+k) at position m(k) ∗ log2|A| of hi;

13: end for

14: end if

15: end for

The above dynamic programming algorithm, FSH, 
scans the input string x and computes all hashing value 
according to the spaced seed Q. In order to better under-
stand the amount of savings we evaluate the above algo-
rithm by counting the number of symbols that are read 
and encoded. First, we can consider the input string 
to be long enough so that we can discard the transient 
of the first s(Q)− 1 hashes. Let us continue to analyze 

C = �C1, . . . , C7�

= �{2, 3, 6}, {0, 4}, {0, 3, 4}, {0, 2, 3}, {2}, {0}, {0}�

ArgBH(s) = arg max
j∈[1,s]

|Cj|

the spaced seed 10111011. If we use the standard func-
tion h(x[i + Q]) to compute all hashes, each symbol of x 
is read |Q| = 6 times. With our algorithm, we have that 
|CArgBH(7)| = 3 and thus half of the symbols do need to be 
encoded again, overall each symbol is read three times. 
The amount of saving depends on the structure of the 
spaced seed. For example, the spaced seed 10101010101, 
with the same weight |Q| = 6, is the one that ensures 
the best savings (|CArgBH(10)| = 5). In fact, with our algo-
rithm, we can compute all hashing values while reading 
each symbol of the input string only once, as with contig-
uous k-mers. To summarize, if one needs to scan a string 
with a spaced seed and to compute all hashing values, the 
above algorithm guarantees to minimize the number of 
symbols to read.

Fast multiple spaced seed hashing
Using multiple spaced seeds, instead of just one spaced 
seed, is reported to increase the sensitivity [14]. There-
fore, applications that exploit such an observation (for 
example [15–17, 26]) will benefit from further speedup 
that can be obtained from the information already com-
puted from multiple spaced seeds.

Our algorithm, FSH, can be extended to accommo-
date the need of hashing multiple spaced seeds simul-
taneously, without backtracking. Let us assume that we 
have a set S = s1, s2, ..., s|S| of spaced seeds, all of the same 
length L, from which we can compute the corresponding 
vectors msi. To this purpose, FSH needs to be modified 
as follows. First of all, a new cycle (between steps 2 and 
14) is needed to iterate the processing among the set of 
all spaced seeds. Next, Cj needs to be redefined so that it 
compares not only a given spaced seed with itself, but all 
spaced seeds vs all:

In the new definition Cyzj  evaluates the number of sym-
bols in common between the seed sy and the j-th shift 
of the seed sz. The function Cyzj  allows to identify, while 
computing the hash of sy, the number of symbols in com-
mon with the j-th shift of seed sz. Similarly, we need to 
redefine ArgBH(i) so that it detects not only the best pre-
vious hash, but also the best seed. We define

that returns, for the seed sy, the pair (sz , p) representing 
the best seed sz and best hash p. With these new defini-
tions we can now adjust our algorithm so that, while 
computing the hash of sy for a given position i, it can 
start from the best previous hash identified by the pair 

C
yz
j = {k − j ∈ sy : k ∈ sz ∧msy(k − j) = msz (k)−msz (j)}

ArgBSH(y, s) = arg max
z∈[1,|S|],j∈[1,s]

|C
yz
j |
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ArgBSH(y, s) = (sz , p). The other steps for the insertion 
of the remaining symbols do not need to be modified.

Algorithm 2 Fast Multiple Spaced Seed Hashing
1: for i := 0 to |x| − L do

2: for j := 1 to |S| do
3: if (i == 0) then

4: h0,j := compute h(x[0 + sj ]);

5: else if (i < L− 1) then

6: (sz , p) = ArgBSH(sj , i);

7: hi,j := hi−p,z msz (p) ∗ log2|A|;
8: for all k ∈ sj\Cjz

p do

9: insert encode(xi+k) at position msj (k) ∗ log2|A| of hi,j ;

10: end for

11: else

12: (sz , p) = ArgBSH(sj , L− 1);

13: hi,j := hi−p,z msz (p) ∗ log2|A|;
14: for all k ∈ sj\Cjz

p do

15: insert encode(xi+k) at position msj (k) ∗ log2|A| of hi,j ;

16: end for

17: end if

18: end for

19: end for

Results and discussion
In this section we will discuss the improvement in terms 
of time speedup of our approach (TFSH) with respect to 
the time TEq1 needed for computing spaced seeds hashing 
repeatedly using Eq. 1: speedup =

TEq1

TFSH
.

Spaced seeds and datasets description
The spaced seeds we used have been proposed in litera-
ture as maximizing the hit probability [17], minimizing 
the overlap complexity [18] and maximizing the sensitiv-
ity [18]. We tested nine of such spaced seeds, three for 
each category. The spaced seeds are reported in Table 1 
and labeled Q1, Q2, ...,Q9. Besides these spaced seeds, 
we also tested Q0, which corresponds to an exact match 
with a 22mer (all 22 positions are set to 1), and Q10, a 

spaced seed with repeated ‘10’ and a total of 22 symbols 
equal to ‘1’. All spaced seeds Q0− Q10 have the same 
weight |Qi| = 22. Furthermore, in order to compare seeds 
with different density, we computed with rasbhari several 
sets of seeds with weights from 11 to 32 and lengths from 
16 to 45.

The datasets we used were taken from previous sci-
entific papers on metagenomic read binning and classi-
fication [6, 27]. We considered both simulated datasets 
(S,L,R), and synthetic datasets (MiSeq, HiSeq, MK_a1, 
MK_a2, and simBA5). The datasets Sx and Lx contain sets 
of paired-end reads of length approximately 80 bp gener-
ated according to the Illumina error profile with an error 
rate of 1%, while the datasets Rx contain Roche 454 sin-
gle-end long reads of length approximately 700bp, and a 
sequencing error of 1%. The synthetic datasets represent 
mock communities built from real shotgun reads of vari-
ous species. Table 2 shows, for each dataset, the number 
of reads and their average length.

All the experiments where run on a laptop equipped 
with an Intel i74510U cpu at 2 GHz, and 16 GB RAM.

Analysis of the time performances
Figure 1 plots, for each spaced seed, the speedup that is 
obtainable with our approach with respect to the stand-
ard hashing computation. As a reference, the baseline 
given by the standard approach is about 17 min to com-
pute the hash for a given seed on all datasets.

First of all it can be noticed that our approach improves 
over the standard algorithm for all of the considered 
spaced seeds. The smallest improvements are for the 
spaced seeds Q2 and Q3, both belonging to the class of 
spaced seeds maximizing the hit probability, for which 
the speedup is almost 1.2×, and the running time is about 
15 min. For all the other spaced seeds the speedup is 
close to 1.6×, thus saving about 40% of the time required 
by the standard computation, and ending the computa-
tion in less than 11 min on average.

Figure 2 shows the performances of our approach with 
respect to the single datasets. In this experiment we con-
sidered the best performing spaced seed in each of the 
classes that we considered, namely Q1, Q6, and Q9, and 
the two additional special cases Q0 and Q10.

We notice that for the spaced seeds Q0 and Q10 the 
standard approach requires respectively, 12 and 10 min, 
to process all datasets. This is already an improvement of 
the standard method with respect to the 17 min required 
with the other seeds Q1− Q9. Nevertheless, with our 
algorithm the hashing of all dataset can be completed in 
just 2.7 min for Q0 e 2.5 min for Q10, with a speedup of 
4.5× and 4.2×.

We observe that while the speedup for the spaced seeds 
Q1, Q6, and Q9 is basically independent on the dataset 

Table 1 The nine spaced seeds used in the experiments 
grouped according to their type

 Spaced seeds maximizing the hit probability [17]

 Q1 1111011101110010111001011011111

 Q2 1111101011100101101110011011111

 Q3 1111101001110101101100111011111

Spaced seeds minimizing the overlap complexity [18]

 Q4 1111010111010011001110111110111

 Q5 1110111011101111010010110011111

 Q6 1111101001011100111110101101111

Spaced seeds maximizing the sensitivity [18]

 Q7 1111011110011010111110101011011

 Q8 1110101011101100110100111111111

 Q9 1111110101101011100111011001111
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and about 1.6×, the speedup for both the 22-mer Q0 and 
the ‘alternate’ spaced seed Q10 is higher, spanning from 
4.3× to 5.3×, depending on the seed and on the dataset. 
In particular, the speedup increases with the length of the 
reads and it achieves the highest values for the long read 
datasets R7,R8 and R9. This behavior is expected, as these 

datasets have longer reads with respect to the others, 
thus the effect of the initial transient is mitigated.

Multiple spaced seed hashing
When the analysis of biological data to perform requires 
the use of multiple spaced seeds, it is possible to compute 
the hash of all seeds simultaneously while reading the 
input string with the method described in Section.

In Fig.  3 we report the comparison between the 
speedup we obtained when computing the hash for each 
spaced seed Q1,...,Q9 independently (light grey), and the 
speedup we obtained when using the multiple spaced 
seeds approach (dark grey).

In most cases, multiple spaced seed hashing allows for 
a further improvement of about 2–5%, depending on the 
dataset. In terms of absolute values, the standard com-
putation to hash all datasets requires 159 min, the com-
putation of all seeds independently with the approach 
described in Section takes 109 min, while the simulta-
neous computation of multiple spaced seeds with our 
method takes 107 min. When considering all datasets 
the average speedup increases from 1.45× (independent 
computation) to 1.49× (simultaneous computation). The 
small improvement can be justified by the fact that the 
spaced seeds considered are by construction with mini-
mal overlap.

Table 2 Number of reads and average lengths for each 
of the dataset used in our experiments

Datasets Number of reads Avg. read length

S6 1,426,457 80

S7 3,307,100 80

S9 4,468,336 80

S10 9,981,172 80

L5 1,016,418 80

L6 1,182,178 80

HiSeq 9,989,713 91

simBA5 5,439,738 100

MixK1 9,629,886 101

MixK2 7,149,900 101

MiSeq 9,933,556 131

R7 290,473 702

R8 374,576 715

R9 588,256 715

Fig. 1 The speedup of our approach with respect to the standard hashing computation, as a function of the spaced seeds used in our experiments
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Predicted speedup vs real speedup
In Fig. 4 are reported the average speedup (Real), over all 
datasets, for the three different groups of nine seeds with 
the same density (W/L), generated with rasbhari [18]. In 

the same Figure we include also the speedup when all 
nine seeds are used simultaneously (Multi) and the theo-
retical speedup predicted by our method (Predicted).

Fig. 2 Details of the speedup on each of the considered datasets. Q0 is the solid 22mer, Q10 is the spaced seed with repeated 10. The other 
reported spaced seeds are the ones with the best performances for each class: Q1 (maximizing the hit probability), Q6 (minimizing the overlap 
complexity) and Q9 (maximizing the sensitivity)

Fig. 3 Details of the time speedup of our approach with the multiple spaced seeds hashing (dark grey) and of our approach with each spaced seed 
hashed independently (light grey)
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As, for the theoretical predicted speedups, these are 
usually in line with the real speedups even if the abso-
lute values are not necessarily close. We suspect that the 
model we use, where shifts and insertions have the same 
cost, is too simplistic. Probably, the real computational 
cost for the insertion of a symbol is greater than the cost 
for shifting, and also cache misses might play a role.

If the theoretical speedup for multiple seeds is greater 
than the theoretical speedup for independent seeds, this 
indicates that in principle, with multiple seeds, it is pos-
sible to improve with respect to the computation of seeds 
independently. It is interesting to note that the real results 
confirm these predictions. For example, in the multiple 
seeds with weights 32, it is impossible to improve both 
theoretically and in practice. In the other two cases, the 
computation of multiple seeds is faster in practice as cor-
rectly predicted by the theoretical speedup.

The effect of spaced seeds weight and reads length
To better understand the impact of reads length and den-
sity of spaced seeds on the speedup, in this section we 
report a series of experiments under various conditions. 
In order to compare the performance of our method on 
spaced seeds with different weights we generated several 
sets of nine spaced seeds with rasbhari [18] with weights 
from 11 to 32 and lengths from 16 to 45. First, we test 
how the reads length affects the speedup. In Fig.  5 we 
report the speedup as a function of the reads length, for 
various spaced seeds with the same density (W / L).

We can observe that the speedup increases as a func-
tion of the reads length. This is expected, in fact the 
effect of the initial transient of our hashing computation 

is mitigated on longer reads. Another interesting behav-
ior is the fact that, although the spaced seeds have all 
the same density, longer spaced seeds have the highest 
speedup. A possible explanation lies in the way our algo-
rithm works. Since our hashing computation explores 
the previous L hashes searching for redundancies, as the 
length of the spaced seed increases, also our ability to 
reuse the previous hashes increases, and similarly it does 
the speedup.

In Fig.  6 we compare the speedup of various spaced 
seeds as a function of the weight W, while the length 
L = 31 remains constant.

We can note that if the weight of the seeds grows then 
also the speedup grows. This behavior is observed for 
various reads length. This phenomenon can be explained 
as follows, if a spaced seed has more 1s (higher weight), 

Fig. 4 The theoretical and real speedup of our approach with respect to the standard hashing computation, as a function of the spaced seeds 
weight

Fig. 5 The speedup of our approach with respect to the standard 
hashing computation as a function of reads length and the spaced 
seeds weight (all with the same density)
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then the chances to reuse part of the seed increase, and 
consequently the speedup of FSH increases.

Conclusions and future work
In this paper we tackle the problem of designing faster 
algorithms for the computation of spaced seed hashing. 
We presented a new approach, FSH, for spaced seeds 
hashing that exploits the information from adjacent 
hashes, in order to minimize the operations that need 
to be performed to compute the next hash. In summary, 
FSH can speedup spaced seed hashing on various con-
ditions. The experiments we performed, on short NGS 
reads, showed that FSH has a speedup of 1.6×, with 
respect to the standard approach, for several kind of 
spaced seeds defined in the literature. Furthermore, the 
gain greatly improved in special cases, where seeds show 
a high autocorrelation, and for which a speed up of about 
4× to 5× can be achieved. The benefit in terms of compu-
tation time increases as the length of the reads grows, like 
in modern sequencing technologies, or when long and 
complex spaced seeds are needed.

Another contribution of this work is to open the way 
to the development of further research on methods for 
speeding up spaced seed hashing computation. In the 
future, we plan to investigate alternative ways to com-
pute spaced seed hashing based on indexing strategies. 
Another interesting direction of research is to experi-
mentally evaluate the impact of fast spaced seed hashing 
in different bioinformatics contexts where tools based on 
spaced seeds are used.
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